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Abstract. We investigate the boundary between finiteness and infinite-
ness in three types of L systems: 0L, DT0L, and T0L. We establish
necessary and sufficient conditions for 0L, DT0L, and T0L systems to be
infinite, and characterize the boundedness of finite classes of such systems.
First, we give a pumping lemma for these systems, proving that the
language of a system is infinite iff the system is pumpable. Next, we show
that the number of steps needed to derive any string in any finite 0L or
DT0L system is bounded by a function depending only on the size of the
alphabet, and not on the production rules or start string. This alphabet
boundedness does not hold for finite T0L systems in general. Finally, we
show that every infinite 0L system has an infinite D0L subsystem.

1 Introduction

L systems are parallel rewriting systems which were originally introduced to
model growth in simple multicellular organisms. With applications in biological
modelling, fractal generation, and artificial life, L systems have given rise to a
rich body of research [6, 2]. L systems can be restricted and generalized in various
ways, yielding a hierarchy of language classes.

The simplest L systems are D0L systems (deterministic Lindenmayer systems
with 0 symbols of context), in which a morphism is successively applied to a start
string or “axiom”. In [7], Vitányi gives a necessary and sufficient condition under
which a D0L system is finite, and gives an upper bound on the size of a finite
D0L language in terms of the size of the alphabet.

Two well-studied generalizations of D0L systems are 0L systems, which
introduce nondeterminism by changing the morphism to a finite substitution,
and DT0L systems, in which the morphism is replaced by a set of morphisms or
“tables”. Generalizing in both directions at once yields the class of T0L systems.
Figure 1 depicts the inclusions among these classes. We extend Vitányi’s work to
these systems.

First, we provide a necessary and sufficient condition under which a T0L
system is infinite, in the form of a pumping lemma. In getting this result, we
adapt a proof technique used in [5] to obtain a pumping lemma for ET0L systems.
It follows from our pumping lemma that every infinite T0L language has an
infinite D0L subset.
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Next, we look for upper bounds on finite 0L, DT0L, and T0L systems in
terms of alphabet size. In contrast to D0L systems, there is no upper bound on
the size of a finite 0L or DT0L language in terms of the size of the alphabet alone.
However, we show that there is such a bound on the number of steps needed
to derive a string in any finite 0L or DT0L system. For finite T0L systems in
general, a counterexample shows that no such alphabet-only bound holds. Figure
2 summarizes these results.

Finally, we consider the notion of a D0L subsystem of a 0L system, formed
by choosing a single production for each symbol from the finite substitution. We
show that every infinite 0L system has an infinite D0L subsystem; this constitutes
a necessary and sufficient condition for a 0L system to be infinite. We also
consider the notion of a D0L subsystem of a DT0L system, formed by choosing
a single table from the set of tables. A simple counterexample shows that not
every infinite DT0L system has an infinite D0L subsystem.

D0L

0L DT0L

T0L

Fig. 1. Inclusion diagram. Arrows indicate
proper inclusion of the lower class by the upper
class; the dashed line indicates incomparability.

alphabet
size-bounded?

alphabet
step-bounded?

D0L yes yes
0L no yes

DT0L no yes
T0L no no

Fig. 2. Alphabet boundedness of finite
D0L, 0L, DT0L, and T0L systems.

Related Work Finiteness of all the L systems considered in this paper is
decidable from Theorem 4.1 of [2]. That the size of the alphabet bounds the
number of steps needed to derive λ in a 0L system was known from Lemma 1.3
of [6]; for finite 0L systems, our Theorem 15 generalizes this result to include
non-empty strings.

Nishida [3] investigated “quasi-deterministic” 0L systems, those for which
there is an integer C such that the cardinality of the set of strings generated in
exactly n steps is less than C for every n. Nishida and Salomaa [4] investigated
“slender” 0L languages, those for which there is a constant k such that the language
has at most k strings of any given length.

Corollary 5, which states our pumping lemma for DT0L systems, can also
be proved via a connection with non-negative integer matrices. Each table in
a DT0L system can be associated with a “growth matrix” indicating for each
production, how many times each symbol appears on the righthand side of that
production. Jungers et al. [1] consider the “joint spectral radius” ρ of a finite set
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of such matrices, distinguishing four cases. In cases (1) and (2) (ρ = 0 or ρ = 1
with bounded products), the associated DT0L system is finite, whereas in cases
(3) and (4) (ρ > 1 or ρ = 1 with unbounded products), by their Corollary 1 and
Proposition 2, assuming every symbol is reachable, the system is pumpable.

Outline of Paper The paper is organized as follows. Section 2 gives preliminary
definitions. Section 3 presents our pumping lemma for T0L systems. Section 4
examines alphabet boundedness for finite 0L, DT0L, and T0L systems. Section 5
studies D0L subsystems of 0L and DT0L systems. Section 6 gives our conclusions.

2 Definitions

An alphabet A is a finite set of symbols. A string is an element of A∗. λ denotes
the empty string. A language is a subset of A∗. A morphism on A is a map
h from A∗ to A∗ such that for all x, y ∈ A∗, h(xy) = h(x)h(y). Notice that
h(λ) = λ. h is nonerasing if for every c ∈ A, h(c) 6= λ. A finite substitution
on A is a map σ from A∗ to 2A∗ such that (1) for all x ∈ A∗, σ(x) is finite and
nonempty, and (2) for all x, y ∈ A∗, σ(xy) = {x′y′ | x′ is in σ(x) and y′ is in
σ(y)}. Notice that σ(λ) = {λ}. For a language L, we define σ(L) = {x′ | x′ is in
σ(x) for some x ∈ L}.

A D0L system is a tuple G = (A, h,w) where A is an alphabet, h is a
morphism on A, and w is in A∗. For x, y ∈ A∗ and i ≥ 0, we write x i−→ y iff
hi(x) = y.

A 0L system is a tuple G = (A, σ,w) where A is an alphabet, σ is a finite
substitution on A, and w is in A∗. For x, y ∈ A∗ and i ≥ 0, we write x i−→ y iff
σi(x) 3 y.

A DT0L system is a tuple G = (A,H,w) where A is an alphabet, H is a
finite nonempty set of morphisms on A (called “tables”), and w is in A∗. For
x, y ∈ A∗ and i ≥ 0, we write x i−→ y iff hi · · ·h1(x) = y for some h1, . . . , hi ∈ H.

A T0L system is a tuple G = (A, T,w) where A is an alphabet, T is a finite
nonempty set of finite substitutions on A (called “tables”), and w is in A∗. For
x, y ∈ A∗ and i ≥ 0, we write x i−→ y iff σi · · ·σ1(x) 3 y for some σ1, . . . , σi ∈ T .

For any of the above systems G, w is called the “axiom” or “start string”.
The language of G is L(G) = {s | w i−→ s for some i ≥ 0}. Call G finite iff L(G)
is finite. Intuitively, a derivation in G means a sequence of steps, starting with w
unless otherwise specified, each consisting of a string together with the precise
table and/or productions used to derive it from the previous step. For formal
definitions, see [6]. D0L, 0L, DT0L, and T0L are the classes of D0L, 0L, DT0L,
and T0L languages, respectively. Clearly D0L ⊆ 0L ⊆ T0L and D0L ⊆ DT0L
⊆ T0L. In fact, 0L and DT0L are incomparable, making all of these inclusions
proper [6].

A D0L (0L, DT0L, T0L) system G with axiom w is step-bounded by n

iff for every s ∈ L(G), there is an m ≤ n such that w m−→ s. Let C be any class
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of D0L (0L, DT0L, T0L) systems. C is alphabet size-bounded iff for every
alphabet A, there is an n ≥ 0 such that for every G ∈ C for which the alphabet
of G is A, |L(G)| ≤ n. C is alphabet step-bounded iff for every alphabet A,
there is an n ≥ 0 such that for every G ∈ C for which the alphabet of G is A, G
is step-bounded by n. Clearly if C is alphabet-size bounded, then C is alphabet
step-bounded, since the same n will suffice.

3 Pumping Lemma for T0L Systems

A T0L system G = (A, T,w) is pumpable iff there are x, y ∈ A such that (1)
some s0 ∈ L(G) contains x, and (2) for some composition t of tables from T , t(x)
includes a string s1 containing distinct occurrences of x and y and t(y) includes
a string s2 containing y.

Lemma 1. Suppose the T0L system G = (A, T,w) is pumpable. Then L(G) is
infinite.

Proof. Since s0 is in L(G) and t is a composition of tables from T , ti(s0) ⊆ L(G)
for every i ≥ 0. A simple induction shows that for all i ≥ 0, ti(s0) includes a
string containing x and at least i copies of y. Hence L(G) is infinite. ut

Lemma 2. Suppose the T0L system G = (A, T,w) is infinite. Then G is
pumpable.

Proof. We assume a familiarity with [5], particularly the notions of an ET0L
system, derivation tree, marked node, and branch node. G can be treated as
an ET0L system in which the alphabet and terminal alphabet are identical.
Following the proof of Theorem 15 in [5], for any node in a derivation tree,
consider the “marked set”, or set of marked symbols which appear on the same
level of the tree. As shown in that proof, since G is infinite, there is an x ∈ A such
that some derivation tree in G of a string in which every position is marked has
a path with two branch nodes labelled by x, with one an ancestor of the other,
with the same marked set. Call the strings in which the ancestor and descendant
nodes appear w1 and w2, respectively. Let t be the composition of tables which
was applied to w1 to derive w2.

Since the ancestor node labelled by x in w1 is a branch node, its descendant
string in w2 contains, in addition to the descendant node labelled by x, a marked
node labelled by some e ∈ A. Now, since w1 and w2 have the same marked set,
every c ∈ A which labels a marked node in w2 also labels a marked node in
w1. By definition, every marked node in w1 has a marked descendant in w2. A
simple induction then shows that for every i ≥ 0, there is a c ∈ A such that w2

contains a marked node labelled by c, and some s ∈ ti(e) contains c. Hence for
every i ≥ 0, ti(e) contains a non-empty string. So there are j ≥ 0, k ≥ 1 and
y ∈ A such that tj(e) includes a string containing y and tk(y) includes a string
containing y. Then since t(x) includes a string containing distinct occurrences
of x and e, tj+1(x) includes a string containing distinct occurrences of x and y.
Then tk(j+1)(x) includes a string containing distinct occurrences of x and y and
tk(j+1)(y) includes a string containing y. So G is pumpable. ut
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Theorem 3. A T0L system is infinite iff it is pumpable.

Proof. Immediate from Lemmas 1 and 2. ut

Corollary 4. A 0L system G = (A, σ,w) is infinite iff there are x, y ∈ A such
that (1) some s ∈ L(G) contains x, and (2) for some i ≥ 0, σi(x) includes a
string containing distinct occurrences of x and y and σi(y) includes a string
containing y.

Corollary 5. A DT0L system G = (A,H,w) is infinite iff there are x, y ∈ A
such that (1) some s ∈ L(G) contains x, and (2) for some composition h of
morphisms from H, h(x) contains distinct occurrences of x and y and h(y)
contains y.

Corollary 6. Every infinite T0L language has an infinite D0L subset.

Proof. Take any infinite T0L language L with T0L system G = (A, T,w). By
Theorem 3, G is pumpable. Let h be a morphism on A such that h(x) = s1,
h(y) = s2 unless x = y, and for every other c ∈ A, h(c) = s for some s ∈ t(c).
Then the language of the D0L system (A, h, s0) is an infinite subset of L. ut

4 Alphabet Boundedness

In this section we examine the alphabet size-boundedness and step-boundedness
of 0L, DT0L, and T0L systems. For D0L, Corollary 4 of [7] implies the following.

Theorem 7 (Vitányi). The class of finite D0L systems is alphabet size-bounded
and alphabet step-bounded.

4.1 0L

We first give a simple counterexample to show that the class of finite 0L systems
is not alphabet size-bounded.

Theorem 8. The class of finite 0L systems is not alphabet size-bounded.

Proof. Let A = {a, b} and take any n ≥ 0. Let w = a. Let σ be a finite substitution
on A such that σ(a) = {b, bb, bbb, . . . , bn} and σ(b) = {b}. Let G = (A, σ,w).
Then L(G) = {a, b, bb, bbb, . . . , bn}. So L(G) is finite, but |L(G)| > n. So the
class of finite 0L systems is not alphabet size-bounded. ut

Next we will show that the class of finite 0L systems is alphabet step-bounded.
We begin with some definitions. Take any 0L system (A, σ,w) and any c ∈ A.
For any s ∈ A∗, c is reachable from s iff for some i ≥ 0, σi(s) includes a
string which contains c. c is reachable iff c is reachable from w. Let L(s) be the
language of the 0L system (A, σ, s). c is mortal (c is in M) iff σi(c) = {λ} for
some i ≥ 0. c is vital (c is in V ) iff c is not in M . c is recursive (c is in R) iff c
is reachable from some s ∈ σ(c). c is monorecursive (c is in MR) iff for every
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s such that for some i ≥ 0, σi(c) includes s and s contains c, s is in M∗cM∗. For
each i ≥ 0, let reachc(i) = {s ∈ σi(c) | c is reachable from s}.

We now build up a series of lemmas toward our result that the class of finite
0L systems is alphabet step-bounded. Lemmas 9 and 10 are given without proof
but are not difficult to verify.

Lemma 9. Suppose c is in R−MR. Then L(c) is infinite.

Lemma 10. For all c ∈M , σ|M |(c) = {λ}.

Lemma 11. Suppose c is in MR and s is in reachc(i) for some i. Then s is in
M∗dM∗ for some d ∈MR.

Proof. Since c is reachable from s, s must contain at least one symbol in V . s
cannot contain more than one symbol in V , otherwise c would not be in MR.
So s contains exactly one symbol d in V . Since c is reachable from d and d is
reachable from c, d is in R. Now suppose d is in R−MR. Then L(d) contains a
string s′ which includes d and a symbol in V . Since c is reachable from d, L(s′)
contains a string which includes c and a symbol in V . Then L(d) contains such a
string. But then L(c) contains such a string, a contradiction, since c is in MR.
So d is in MR. Then s is in M∗dM∗. ut

Lemma 12. Suppose c is in MR. Then there is a k such that 1 ≤ k ≤ |MR|
and some string in σk(c) contains c.

Proof. Since c is in MR, there is a k ≥ 1 such that some string in σk(c) contains
c. Take the smallest such k. Then there is an s in M∗cM∗ and derivation D of
s from c in k steps. Suppose k > |MR|. Then the c in s has > |MR| ancestors
in D. Take any such ancestor d. c is reachable from d, so by Lemma 11, since
d is not in M , d is in MR. So every ancestor of the c in s is in MR. But then
one such ancestor must repeat, and the derivation could have been shortened to
yield a k′ such that 1 ≤ k′ < k. Therefore k ≤ |MR|. ut

Lemma 13. Suppose c is in A and L(c) is finite. Then there is a k such that
1 ≤ k ≤ |A| and reachc(|A|2) = reachc(|A|2 + k).

Proof. Suppose c is not in MR. Then by Lemma 9, c is not in R. So c is not
reachable from any s in σ(c). Then for every i ≥ 1, reachc(i) = {}. So say c
is in MR. From Lemma 12, there is a k such that 1 ≤ k ≤ |MR| and some
s ∈ σk(c) contains c. Then s is in reachc(k). Let Set(i) = {a ∈MR | some string
in reachc(i) includes a}. Take any i ≥ 0 and a ∈ Set(ki). Some s′ ∈ reachc(ki)
includes a. Then s′ is in σki(c). Since s contains c, s′ is a substring of some s′′

in σki(s). s′′ is in σk(i+1)(c). Since c is reachable from s′, c is reachable from
s′′. So s′′ is in reachc(k(i + 1)). Hence a is in Set(k(i + 1). So for all i ≥ 0,
Set(ki) is a subset of Set(k(i + 1)). Hence there is an i < |MR| such that
Set(ki) = Set(k(i+ 1)). Let m = ki+ |M | and n = k(i+ 1) + |M |. We will show
that reachc(m) = reachc(n).

Take any s ∈ reachc(m). There is some s′ ∈ σki(c) such that s is in σ|M |(s′).
Then s′ is in reachc(ki), so by Lemma 11, s′ is in M∗dM∗ for some d ∈ MR.



Infiniteness and Boundedness in 0L, DT0L, and T0L Systems 7

Then by Lemma 10, σ|M |(d) includes s. Now d is in Set(ki), hence in Set(k(i+1)).
Then by Lemma 11, reachc(k(i+1)) contains an s′′ ∈M∗dM∗. So s is in σ|M |(s′′),
hence in σk(i+1)+|M |(c), hence in reachc(n).

Now take any s ∈ reachc(n). There is some s′ ∈ σk(i+1)(c) such that s is in
σ|M |(s′). Then s′ is in reachc(k(i + 1)), so by Lemma 11, s′ is in M∗dM∗ for
some d ∈MR. Then by Lemma 10, σ|M |(d) includes s. Now d is in Set(k(i+ 1)),
hence in Set(ki). Then by Lemma 11, reachc(ki) contains an s′′ ∈M∗dM∗. So
s is in σ|M |(s′′), hence in σki+|M |(c), hence in reachc(m).

Therefore reachc(m) = reachc(n). Then for all i ≥ m, reachc(i) = reachc(i+
k). Then since m ≤ |MR| ·(|MR|−1)+ |M | ≤ |A|2, reachc(|A|2) = reachc(|A|2 +
k). ut

Theorem 14. For every alphabet A, there are f ≥ 1, g ≥ 0 such that for every
finite 0L system (A, σ,w), σg(w) = σg+f (w).

Proof. Let f(0) = 1 and for every x ≥ 1, f(x) = x!f(x− 1). Let g(0) = 0 and for
every x ≥ 1, g(x) = x2 +g(x−1)+f(x). Take any finite 0L system G = (A, σ,w).
We will show by induction on |A| that σg(|A|)(w) = σg(|A|)+f(|A|)(w).

Take the base case of |A| = 0. Then w = λ. Then for all i ≥ 0, σi(w) = {λ}.
So σg(0)(w) = σg(0)+f(0)(w).

So say |A| ≥ 1 and w 6= λ. Suppose for induction that for every finite
0L system (A′, σ′, w′) such that |A′| < |A|, σ′g(|A′|)(w′) = σ′g(|A′|)+f(|A′|)(w′).
Take any c in w. By Lemma 13, there is a k′ such that 1 ≤ k′ ≤ |A| and
reachc(|A|2) = reachc(|A|2 + k′). Let k = |A!| and t = |A|2. Then since k is
divisible by k′, reachc(t) = reachc(t+ k). Let x = f(|A| − 1) and y = g(|A| − 1).
We will show that σt+y+kx(c) = σt+y+2kx(c).

Take any s ∈ σt+y+kx(c). Then there is an r ∈ σt(c) such that s is in
σy+kx(r). Suppose c is reachable from r. Then r is in reachc(t). Since reachc(t) =
reachc(t + kx), r is in σt+kx(c). Then s is in σt+y+2kx(c). So say c is not
reachable from r. Then by the induction hypothesis, σy(r) = σy+x(r). Hence
σy+kx(r) = σy+2kx(r). Then s is in σy+2kx(r). So s is in σt+y+2kx(c).

Now take any s ∈ σt+y+2kx(c). Then there is an r ∈ σt+kx(c) such that s is
in σy+kx(r). Suppose c is reachable from r. Then r is in reachc(t + kx). Since
reachc(t + kx) = reachc(t), r is in σt(c). Then s is in σt+y+kx(c). So say c is
not reachable from r. Then by the induction hypothesis, σy(r) = σy+x(r). Hence
σy(r) = σy+kx(r). Then s is in σy(r). So s is in σt+y+kx(c).

So for all c in w, σt+y+kx(c) = σt+y+2kx(c). Hence σt+y+kx(w) = σt+y+2kx(w).
Now t+ y + kx = g(|A|) and kx = f(|A|), completing the induction. ut

Theorem 15. The class of finite 0L systems is alphabet step-bounded.

Proof. Take any alphabet A. Take any f, g meeting the conditions of Theorem 14
for A. Let n = f + g. Take any finite 0L system G = (A, σ,w) and any s ∈ L(G).
Then there is a lowest i ≥ 0 such that s is in σi(w). Suppose i > n. By Theorem 14,
σg(w) = σg+f (w). Then σi(w) = σi−f (w). Then s is in σi−f (w), a contradiction.
So G is step-bounded by n. Hence the class of finite 0L systems is alphabet
step-bounded. ut
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4.2 DT0L

In this subsection, we first give a simple counterexample to show that the class
of finite DT0L systems is not alphabet size-bounded. We then show that this
class is alphabet step-bounded, first proving a lemma about a more restricted
class of systems.

Theorem 16. The class of finite DT0L systems is not alphabet size-bounded.

Proof. Let A = {a, b} and take any n ≥ 0. Let w = a. For every 1 ≤ i ≤ n, let hi

be a morphism on A such that hi(a) = bi and hi(b) = b. Let H = {h1, . . . , hn}.
Let G = (A,H,w). Then L(G) = {a, b, bb, bbb, . . . , bn}. So L(G) is finite, but
|L(G)| > n. So the class of finite DT0L systems is not alphabet size-bounded. ut

Take any DT0L system G = (A,H,w). For any s ∈ A∗, let L(s) be the
language of the DT0L system (A,H, s). If for every h ∈ H, h is nonerasing, G is
called a propagating DT0L system or PDT0L system [2].

Lemma 17. For every alphabet A, there is an m ≥ 0 such that for every finite
PDT0L system G = (A,H,w), for any h1, . . . , hn ∈ H such that n > m, there
are j, k such that 0 ≤ j < k ≤ n and hj · · ·h1(w) = hk · · ·h1(w).

Proof. Take any alphabet A. Take any m > (1 + (|A| + 1)!) · |A||A|. Take any
finite PDT0L system G = (A,H,w). For any A′ ⊆ A, call S = {s0, s1, s2, . . . , sn}
relevant to A′ if every si is in A′∗, L(s0) is finite, and for every 1 ≤ i ≤ n, there
is an h ∈ H such that h(si−1) = si. Notice that since G is a PDT0L system, for
every i, |si| ≤ |si+1|. Let Jumps(A′, S) = |{i | |si| < |si+1|}|. We will show by
induction on |A| that for every S relevant to A, Jumps(A,S) ≤ (|A|+ 1)!. Take
any S = {s0, s1, s2, . . . , sn} relevant to A.

For the base case, suppose |A| = 0. Then for every si ∈ S, si = λ. So
Jumps(A,S) = 0.

Now suppose for induction that for every A′ ( A, for every S′ relevant to A′,
Jumps(A′, S′) ≤ (|A′|+ 1)!. If s0 = λ, clearly Jumps(A,S) = 0. So say s0 6= λ.
Take any c in s0. Let S′ = {s′0, s′1, s′2, . . . , s′n}, where s′0 = c and each s′i is the
descendant string in si of the c in s0. We will show that Jumps(A,S′) ≤ 1+|A|!. If
there is no j such that |s′j | < |s′j+1|, then Jumps(A,S′) = 0. So say there is such a
j. Take the first such j. Then s′j = d for some d ∈ A, since |s′0| = 1. Suppose there
is a k > j such that s′k contains d. Then there is a composition h of morphisms
from H such that h(d) contains d and |h(d)| > 1. Then for every i ≥ 0, |hi(d)| > i.
But then L(d) is infinite, hence L(s0) is infinite, a contradiction. So for every
k > j, s′k does not contain d. Let S′′ = {s′j+1, s

′
j+2, . . . , s

′
n}. Then Jumps(A,S′)

= 1 + Jumps(A − d, S′′). So by the induction hypothesis, Jumps(A,S′) ≤
1+(|A|−1+1)! ≤ 1+ |A|!. Now for each c in s0, there will be some S′ constructed
in this way. For any two occurrences of the same c, S′ will be the same. Then there
are at most |A| distinct S′s. Therefore Jumps(A,S) ≤ |A| · (1 + |A|!) ≤ (|A|+ 1)!,
completing the induction.

Now take any h1, . . . , hn ∈ H such that n > m. For each 0 ≤ i ≤ n, let
si = hi · · ·h1(w). Then s0 = w. So S = {s0, s1, s2, . . . , sn} is relevant to A.
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Hence Jumps(A,S) ≤ (|A| + 1)!. Then since n > m, there are j′, k′ such that
|sj′ | = |sk′ | and j′ + |A||A| ≤ k. Then every si between sj′ and sk′ has the same
length. But at most |A||A| such si are distinct, since each c in sj′ has only one
descendant in each si, and any two occurrences of the same c have the same
descendant. So there are j, k such that 0 ≤ j′ ≤ j < k ≤ k′ ≤ n and sj = sk,
which was to be shown. ut

Theorem 18. For every alphabet A, there is a b ≥ 0 such that for every finite
DT0L system G = (A,H,w), for any h1, . . . , hn ∈ H such that n > b, there are
p, q such that 1 ≤ p ≤ q ≤ n and hn · · ·hq+1hp−1 · · ·h1(w) = hn · · ·h1(w).

Proof. Take any alphabet A. Take any m meeting the conditions of Lemma 17
for A. Take any b > m · 2|A|. Take any finite DT0L system G = (A,H,w).
Take any h1, . . . , hn ∈ H such that n > b. Let s = hn · · ·h1(w). For each
0 ≤ i ≤ n, let si = hi · · ·h1(w). Then s0 = w and sn = s. For each 0 ≤ i < n,
let fi = hn · · ·hi+1 and let Stayi = {c ∈ A | fi(c) 6= λ}. Each Stayi is one
of 2|A| possible sets. Then since n > m · 2|A|, there is a subset Stay of A and
0 ≤ z0 < z1 < z2 < · · · < zm < n such that for every 0 ≤ i ≤ m, Stayzi

= Stay.
Let Gone = A− Stay. Notice that for every c ∈ Gone and 1 ≤ i ≤ n, hi(c) is in
Gone∗. For each x ∈ A∗, let Core(x) be the string obtained from x by erasing
all occurrences of symbols in Gone.

We now construct a finite PDT0L system G′. Let A′ = Stay and w′ =
Core(sz0). For each 1 ≤ i ≤ m and c ∈ Stay, let h′i(c) = Core(hzi

· · ·hzi−1+1(c)).
Let H ′ = {h′1, . . . , h′m}. Now, for any c ∈ Stay and any h′i ∈ H ′, clearly h′i(c) is
in Stay∗. Further, since fzi−1(c) 6= λ, h′i(c) 6= λ. Therefore G′ = (A′, H ′, w′) is
a PDT0L system. Further, since L(G) is finite, and w′ was obtained by erasing
letters from a string in L(G), and each h′i was obtained by composing tables
from H and erasing letters from the result, L(G′) is finite.

Now for each 0 ≤ i ≤ m, let s′i = t′i · · · t′1(w). Then by Lemma 17, there are
j, k such that 0 ≤ j < k ≤ m and s′j = s′k. Notice that for each 0 ≤ i ≤ m,
s′i = Core(szi). Then Core(szj ) = Core(szk

) = s′j = s′k. Now fzk
(szk

) = s.
Therefore fzk

(Core(szk
)) = s. Then fzk

(Core(szj )) = s. So then fzk
(szj ) = s.

So set p = zj + 1 and q = zk. Then hn · · ·hq+1hp−1 · · ·h1(w) = hn · · ·hq+1(szj
)

= fzk
(szj

) = s, as desired. ut

Theorem 19. The class of finite DT0L systems is alphabet step-bounded.

Proof. Take any alphabet A. Take any b meeting the conditions of Theorem 18
for A. Take any finite DT0L system G = (A,H,w). Then by Theorem 18, any
derivation in G with more than b steps can be shortened. So G is step-bounded
by b. Hence the class of finite DT0L systems is alphabet step-bounded. ut

4.3 T0L

Theorem 20. The class of finite T0L systems is not alphabet step-bounded.
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Proof. Let A = {a, b, x} and take any n ≥ 0. Let w = (ax)n+1. For every
1 ≤ i ≤ n + 1, let σi be a finite substitution on A such that σi(a) = {a, bi},
σi(b) = {b}, and σi(x) = {x}. Let T = {σ1, . . . , σn+1}. Let G = (A, T,w). Clearly
G is finite. Let s = bxbbxbbbx · · · bn+1x. Then s can be derived from w in n+ 1
steps, by applying each table in turn to replace an a by bs. In any derivation of
s from w, at each step, at most one a can be replaced by bs, otherwise s would
become unreachable. So at least n + 1 steps are needed to derive s. Hence G
is not step-bounded by n. So the class of finite T0L systems is not alphabet
step-bounded. ut

Corollary 21. The class of finite T0L systems is not alphabet size-bounded.

5 D0L Subsystems

By Corollary 6, every infinite T0L language has an infinite D0L subset. In this
section, we consider a related notion, that of a D0L subsystem of a 0L or DT0L
system. Such a subsystem not only generates a subset of the original language,
but also shares structural characteristics with the original system.

5.1 0L

Let G = (A, σ,w) be a 0L system. A D0L subsystem of G is a D0L system
G′ = (A, h,w) such that for every c ∈ A, h(c) is in σ(c). Notice that L(G′) ⊆
L(G).

Lemma 22. Take any 0L system G = (A, σ,w) with mortal symbols M and
vital symbols V . Take any D0L subsystem G′ = (A, h,w) of G such that for every
c ∈ V , h(c) contains some d ∈ V . Let G′ have mortal symbols M ′ and vital
symbols V ′. Then M ′ = M and V ′ = V .

Proof. Take any c ∈ M . Then σi(c) = {λ} for some i ≥ 0. Then since G′ is a
D0L subsystem of G, hi(c) = λ. So c is in M ′. Now take any c ∈ V . We will show
that c is in V ′ by induction on the number n of symbols which are reachable
from c under h.

For the base case, suppose n = 1. Then only c is reachable from c under h.
Then since c is in V , h(c) must contain c. Then c is recursive under h, so c is in
V ′.

So say n ≥ 1. Suppose for induction that for every c′ in V and n′ < n such
that n′ is the number of symbols reachable from c′ under h, c′ is in V ′. Since
c is in V , h(c) contains some d ∈ V . Suppose c is reachable from d. Then c is
recursive under h, so c is in V ′. So say c is not reachable from d. Then since every
symbol reachable from d is reachable from c, the number of symbols reachable
from d is at most n− 1. So by the induction hypothesis, d is in V ′. Then c is in
V ′, completing the induction.

So M ⊆M ′ and V ⊆ V ′. Then since M ∪V = M ′∪V ′ = A and M ′∩V ′ = {},
M ′ = M and V ′ = V . ut
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Theorem 23. Every infinite 0L system has an infinite D0L subsystem.

Proof. Take any infinite 0L system G = (A, σ,w). By Corollary 4, there is a
derivation D : s0 → · · · → sk → · · · → sn such that 0 ≤ k < n, s0 = w, sk

contains a c ∈ A whose descendant string in sn contains distinct occurrences
of c and a vital symbol d, and no shorter derivation has these properties. The
c in sn has an ancestor symbol ci in each si, and each ci generates a string xi

contained in si+1, for 0 ≤ i < n. Similarly, the d in sn has an ancestor symbol di

in each si, for 0 ≤ i < n. Let m be the highest i such that k ≤ i < n and the d in
sn is descended from ci. Intuitively, m designates the string containing the last
common ancestor of the c and d in sn. Let h be a morphism on A constructed as
follows. First, for i from n− 1 down to 0, set h(ci) = xi unless h(ci) has already
been set. Then for all e ∈ A for which h(e) has not been set, if some s ∈ σ(e)
contains a vital symbol, set h(e) to any such s, otherwise set h(e) to any s ∈ σ(e).
Then G′ = (A, h,w) is a D0L subsystem of G. We will show that G′ is infinite.

First we show that c is reachable from w under h. Take any i such that
0 ≤ i < n. We will show by induction that c is reachable from ci under h. For
the base case, suppose i = n− 1. Clearly c is reachable from cn−1 under h, since
h(cn−1) = xn−1, which contains c. So say i < n− 1. Suppose for induction that
for all j such that i < j < n, c is reachable from cj under h. Suppose there is a j
such that i < j < n and cj = ci. Then by the induction hypothesis, c is reachable
from cj = ci under h. So say there is no such j. Then h(ci) = xi, which contains
ci+1. By the induction hypothesis, c is reachable from ci+1 under h, hence c is
reachable from ci under h, completing the induction. So c is reachable from c0
under h, hence c is reachable from w under h.

Next we show that there are no i, j such that k ≤ i < j < n and ci = cj .
Suppose there are such i, j. Suppose k ≤ i < j ≤ m. Then cm could be derived
from ci in m− j steps instead of m− i steps, so D is not minimal, a contradiction.
So suppose m < i < j < n. Then the steps from i to j could be skipped, so that
at step n− (j − i), ci would reach c and di would reach dn−(j−i), which is vital.
But then D is not minimal. So suppose k ≤ i ≤ m < j < n. Then the descendant
string in sj of the ci in si contains distinct occurrences of ci and dj . But then D
could be shortened from length n to length j. So there are no such i, j.

So for all k ≤ i < n, h(ci) = xi. Hence cm is reachable from c under h and
c is reachable from cm+1 under h. Now h(cm) = xm, which contains distinct
occurrences of cm+1 and dm+1. By Lemma 22, dm+1 is vital under h. Then some
string s containing distinct occurrences of c and a vital symbol can be derived
from xm under h. Then some string containing s can be derived from c under h.
Hence c is recursive under h, and not monorecursive under h.

Then since c is reachable, recursive, and not monorecursive in G′, G′ is
infinite by Lemma 9. Therefore every infinite 0L system has an infinite D0L
subsystem. ut

5.2 DT0L

Let G = (A,H,w) be a DT0L system. A D0L subsystem of G is a D0L system
G′ = (A, h,w) such that h is in H. Notice that L(G′) ⊆ L(G).
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Theorem 24. There is an infinite DT0L system with no infinite D0L subsystem.

Proof. Let A = {a, b}. Let h1 and h2 be morphisms on A such that h1(a) = ab,
h1(b) = λ, h2(a) = λ, and h2(b) = bb. Let H = {h1, h2}. Let w = a. Then the
DT0L system (A,H,w) is infinite but has no infinite D0L subsystem. ut

6 Conclusion

In this paper we have extended to 0L, DT0L, and T0L systems the work of
Vitányi [7] on infiniteness and boundedness of D0L systems. In doing so, we
relaxed the condition of alphabet size-boundedness (which holds for the class of
finite D0L systems) to one of alphabet step-boundedness (which holds also for
the classes of finite 0L and DT0L systems). One direction for further work would
be to find a related boundedness condition which holds for the class of finite T0L
systems. We have also shown that every infinite T0L language has an infinite
D0L subset, and that every infinite 0L system has an infinite D0L subsystem.
It would be interesting to see whether in classes of L systems beyond the ones
studied here, infiniteness is similarly characterized by the presence of notable
infinite subsets and subsystems.
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